Time: 1 hr 30 min

- 1. Check whether the relation R on the set given by $R = \{(1,1), (2,2), (2,3), (1,2), (3,3)\}$ is an equivalence relation. (1)
- 2. Check whether the relation S on the set R defined by $S = \{(a,b): a \le b^3\}$ is reflexive, symmetric or transitive. (1)
- 3. Verify whether the modulus function defined $f : R \to R$ is one-one and on-to. (2)

4. Verify
$$f: N \to N$$
 defined by $f(n) = \begin{cases} \frac{n+1}{2}, n = odd \\ \frac{n}{2}, n = even \end{cases}$ is injective and surjective. (2)

- 5. Give an example of a relation, which is (i) Transitive but neither reflexive nor symmetric (ii) reflexive and symmetric but not transitive. (2)
- 6. If $f: R \to R$ be given by $f(x) = x^2 + 2$ and $g: R \{1\} \to R$ be given by $g(x) = \frac{x}{x-1}$. Find $f \circ g$ and $g \circ f$. (2)
- 7. Let R be a relation defined on the set of natural numbers N as $R = \{(x, y): 2x + y = 41\}$. Find the domain and range of R. Also verify whether R is reflexive, symmetric or transitive. (3)
- 8. Prove that the relation R on the set NxN defined by $(a,b)R(c,d) \Leftrightarrow a + d = b + c$, $\forall (a,b), (c,d) \in N \times N$ is an equivalence relation. Also find [(2,3)] and [(1,3)]. (4)
- 9. Let N denote the set of all natural numbers and R be the relation on NxN defined by $(a,b)R(c,d) \Leftrightarrow ad(b+c) = bc(a+d)$, check whether R is an equivalence relation on NxN. (4)
- 10. If R and S are two equivalence relations on set A, then prove that $R \cap S$ is an equivalence relation on A. Is union of two equivalence relation on a set a equivalence relation? Justify. (4)
- 11. Prove that the relation R on the set Z defined by $(a,b) \in R \Leftrightarrow a-b$ is divisible by 5 is an equivalence relation. (3)
- 12. Show that the relation R on the set $A = \{x \in Z : 0 \le x \le 12\}$ given by $(a, b) \in R \Leftrightarrow |a b|$ is a multiple of 4. Find the set of all elements related to 1. (3)
- 13. Show that $f: R \{3\} \rightarrow R \{1\}$ given by $f(x) = \frac{x-2}{x-3}$ is bijective. (3)
- 14. Show that if $f: A \to B$ and $g: B \to C$ are one-one then $g \circ f: A \to C$ also one-one. Are f and g both necessarily one-one, if $g \circ f$ is one-one? Justify. (3)
- 15. Show that if $f: A \to B$ and $g: B \to C$ are on-to then $g \circ f: A \to C$ also on-to. Are f and g both necessarily on-to, if $g \circ f$ is on-to? Justify. (3)

Marks: 40